Tetrahedron Letters No.33, pp. 3205-3207, 1967. Pergamon Press Ltd. Printed in Great Britain.

CYCLIC CUMULENES. THE SYNTHESIS AND SOME REACTIONS OF 1,2,3-CYCLODECATRIENE William R. Moore and Thomas M. Ozretich Department of Chemistry, Massachusetts Institute of Technology Cambridge, Massachusetts 02139

(Received 31 May 1967)

The formation of allenes from the reaction of the dibromocarbene adducts of olefins with organolithium reagents has proved to be a reaction of considerable synthetic utility.^{1,2} Recently, extension of this reaction to the dibromocarbene adducts of allenes has led to the formation of several cumulenes.^{3,4} In this paper we report the conversion of the dibromocarbene adduct of a cyclic allene to a cyclic cumulene and some of the properties of the latter.

Treatment of 1,2-cyclonomadiene with one equivalent of phenyl(tribromomethyl)mercury,⁵ in refluxing benzene followed by removal of phenylmercuric bromide and the solvent gives 10,10-dibromobicyclo[7.1.0]decene-1(2), <u>1</u>, in nearly quantitative yield. Since extensive decomposition has occurred on distillation, usually this material has been employed without further purification; gas chromatographic analysis and subsequent reactions indicate a purity of at least 95%. Distilled samples of <u>1</u> have been obtained by use of a Hickman still (~40° at 0.01 mm); mmr: δ multiplet 6.50 (0.9⁺H), broad bands centered at 2.20 and 1.50 (13H).

Treatment of <u>1</u> with methyllithium in ether at -80° followed by warming to 0° and hydrolytic work-up gives almost complete conversion to 1,2,3-cyclodecatriene, <u>2</u>, (obtained as a solution in ether in at least 93% yield) along with a small amount (~5%) of an unidentified compound.^{6,7}

The cyclic cumulene reacts rapidly with oxygen to form a white solid insoluble in ether. When neat, 2 tends to polymerize, but pure samples have been collected (for spectral purposes) by glc.

A cold dilute solution of 2 in ether has been stored under nitrogen for several weeks without appreciable loss.

The mass spectrum of 2 shows a strong molecular ion peak at m/e 13^{\downarrow} (14_{\odot} of the base peak at 91) in agreement with the molecular formula $C_{10}H_{14}$. The nmr spectrum shows bands centered at 8 1.54 (-CH₂CH₂CH₂CH₂-) and 2.30 (allylic CH₂) and a triplet at 5.53 (J ~ 2.6 cps, =C=CH-). Intense absorption in the ultraviolet characteristic of butatrienes⁴ is found; $\lambda_{max}^{heptane}$ 228 (log ϵ 4.09) and 256 mµ (log ϵ 4.35), 286 sh (log ϵ 3.1)

Ozonolysis of <u>2</u> employing oxygen-free ozone in ether-methylene chloride at -80° followed by oxidation with hydrogen peroxide-acetic acid and esterification with methanol-sulfuric acid gave dimethyl suberate.⁶ Reduction of the ozonolysis product with sodium borohydride followed by methylation with sodium hydride-methyl iodide gave 1,8-dimethoxyoctane.⁸

Reduction of $\underline{2}$ with excess sodium in liquid ammonia occurred rapidly to give <u>cis</u> and <u>trans</u>cyclodecene in a ratio of 61 to 1; in the presence of <u>tert</u>-butyl alcohol the ratio was lowered to 9.3 to 1. Reduction of excess $\underline{2}$ with sodium in liquid ammonia (to enable isolation of intermediate reduction products) gave <u>cis,cis</u>-1,3-cyclodecadiene as the major product (53%) along with 1,2-cyclodecadiene (18%) and a trace of cyclodecyne as well as <u>cis</u> cyclodecene (13%) from further reduction and two unidentified compounds (1% and 15%) which from glc retention times appear to be sodium amide-promoted isomerization products of $\underline{2}$. Formally then, the major reductive pathway is addition to the central double bond of $\underline{2}$.

Although the addition of bromine to $\underline{2}$ has given a complex mixture of products, the cumulene rapidly absorbs one equivalent of iodine to give a diiodide assigned structure $\underline{2}$ along with minor amounts of several unidentified compounds. Reduction of $\underline{2}$ with tributyltin hydride gave <u>cis,cis</u>-1,3-cyclodecadiene. Treatment of $\underline{3}$ with methyllithium in ether resulted in regeneration of $\underline{2}$.

Further studies of the chemistry of 2 as well as the preparation of other cyclic cumlenes are in progress.

References

- (1) W. R. Moore and H. R. Ward, J. Org. Chem., 25, 2073 (1960); 27, 4179 (1962).
- (2) L. Skattebál, Tetrahedron Letters, 167 (1961); Acta Chemica Scand., 17, 1683 (1963).
- (3) L. Skattebøl, Tetrahedron Letters, 2175 (1965).
- (4) W. J. Ball, S. R. Landor and H. Punja, <u>J. Chem. Soc.</u>, 194 (1967).
- (5) D. Seyferth and J. M. Burlitch, J. Organometal. Chem., 4, 127 (1965).
- (6) The results are similar if the reaction is carried out at 0° except that at this temperature traces of several other materials result.
- (7) The yield estimates are based on glc employing naphthalene as an internal standard. The minor compound has the same retention time as one of the base-catalyzed isomerization products of 2; it may be 1,2,4-cyclodecatriene.
- (8) Identified by comparison with an authentic sample.